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Trees
• Trees are ADS where every Node has directional links to one or more 

nodes underneath it. [1]
• An m-tree is a node with 0:m links and 1:m-1 pieces of data in each node.  

For example a 4-tree (quadtree or 4-way tree) might look something like 
this:



Tree Definitions

• The top node is called the root. [1]
• Any node that is not the root node is a child of 

some parent.
• Any node that has one or more children is a 

parent.
• Nodes connected to same parent are called 

siblings. [2]
• Any node that has no children is called a leaf.
• Any part of the tree smaller than the whole is 

called a subtree.



Tree Use [1]

• The back-ends of databases.

• Data stores that are not databases.

• Problem solving.

• Game playing.

• Graphics and virtual reality: for tracking line of sight 
as well as storing screen objects.

• Graph theory (e.g. path finding).

The algorithm used to insert data into the tree will vary 
from application to application.



Traversal

• Traversing a tree involves going to every node.

• This needs to be done for processes such as 
printing, gathering statistics, end-of-month 
calculations, searching etc.

• It can be done either in-order, pre-order or post-
order.

• The method chosen depends on the application.

• In the examples, we look at a 2-way or binary 
tree, as this is the simplest to understand.



In-Order Traversal

ProcessNode (node) [1]
ProcessNode (leftLink)

Process this node

ProcessNode (rightLink)

End ProcessNode

Examples don’t have the terminating condition for recursion – see note [1]



In-Order Traversal Animation

ProcessNode (node)

ProcessNode (leftLink)

Process this node

ProcessNode (rightLink)

End ProcessNode

END



Pre-Order Traversal

ProcessNode (node)

Process this node

ProcessNode (leftLink)

ProcessNode (rightLink)

End ProcessNode



Pre-Order Traversal Animation

ProcessNode (node)

Process this node

ProcessNode (leftLink)

ProcessNode (rightLink)

End ProcessNode

END



Post-Order Traversal

ProcessNode (node)

ProcessNode (leftLink)

ProcessNode (rightLink)

Process this node

End ProcessNode



Post-Order Traversal Animation

ProcessNode (node)

ProcessNode (leftLink)

ProcessNode (rightLink)

Process this node

End ProcessNode

END



Tree Searching
• Trees will also need to be searched, and there are 

many different search algorithms available.
• When not using heuristics, there are two main 

ways in which to do a logical search:
– Depth first

• which is simply a search done in pre-order stopping when 
the target data is found;

• the aim is to find any match to the target;
• this is commonly used when trying to find the one unique 

match.

– Breadth first
• where the nodes are searched in layers, down from the top;
• this search aims to find the match that is closest to the start;
• a common use for this is in game playing: you want to win as 

soon as possible.



Depth First Search Animation

Search (node) : boolean

boolean found

found = target at this node

IF not found

found = Search (leftLink)

IF not found

found = Search (rightLink)

ENDIF

ENDIF

return found

End Search

X

X

END



Breadth First Animation [1]
Add root to a queue of pointers
WHILE queue is not empty AND not found

Dequeue (current)
If current.data == target

found = true
ELSE

Enqueue (current.left)
Enqueue (current.right)

ENDIF
ENDWHILE

X

X



Breadth First Animation

X

X

Add root to a queue of pointers
WHILE queue is not empty AND not found

Dequeue (current)
If current.data == target

found = true
ELSE

Enqueue (current.left)
Enqueue (current.right)

ENDIF
ENDWHILE

current



Breadth First Animation

X

X

Add root to a queue of pointers
WHILE queue is not empty AND not found

Dequeue (current)
If current.data == target

found = true
ELSE

Enqueue (current.left)
Enqueue (current.right)

ENDIF
ENDWHILE

current



Breadth First Animation

X

X

Add root to a queue of pointers
WHILE queue is not empty AND not found

Dequeue (current)
If current.data == target

found = true
ELSE

Enqueue (current.left)
Enqueue (current.right)

ENDIF
ENDWHILE

current



Breadth First Animation

X

X

Add root to a queue of pointers
WHILE queue is not empty AND not found

Dequeue (current)
If current.data == target

found = true
ELSE

Enqueue (current.left)
Enqueue (current.right)

ENDIF
ENDWHILE

current



Breadth First Animation

X

X

Add root to a queue of pointers
WHILE queue is not empty AND not found

Dequeue (current)
If current.data == target

found = true
ELSE

Enqueue (current.left)
Enqueue (current.right)

ENDIF
ENDWHILE

current

END



Readings

• Textbook: Chapter on Binary Trees
– Should go through the programming example at the end of 

the chapter.

• Textbook: Chapter on Recursion
– Revise the concept covered in earlier units and be able to 

implement recursive routines.
– Recursion vs Iteration

• Further exploration:
– Reference book, Introduction to Algorithms. For further 

study, there are many tree and tree algorithms described 
in the reference book. For this unit, the lecture notes, 
practical work and the textbook is sufficient.



Data Structures and Abstractions

Binary Search 
Trees



Introduction to ADS Sorted Data Stores

• As pointed out in the earlier lecture, trees are 
used for problem solving, game playing, virtual 
reality and data storage, amongst other things.

• When used for data storage they are always built 
so that the data is sorted as it is inserted.

• We will be looking at several different sorted 
trees including Binary Search Trees, AVL Trees, 
Multiway Trees, B-Trees and B+ trees. [1]

• In later lectures we will also consider non-sorted 
trees used to store information during graph 
processing.
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The Data to be Stored

• The data stored in the tree can either be the actual data or a 
pointer/index to the actual data.

• The actual data stored will almost always contain a key plus other 
data.

• The key is used to place (order) the data in the container.

• Examples of keys are account numbers, membership numbers, 
names, or keys calculated from some part of the data.

• The key should be unique to enable the BST to be more efficient.

• It also possible to have secondary keys, where a list, array or tree is 
‘overlayed’ on the first structure giving a different sorted order.
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Binary Search Trees

• Binary trees are trees where

– every node has 1 piece of data and two pointers (left, right)

– every node, except root, can have a parent pointer [1]

– therefore every node has 0:2 children

• Binary search trees are binary trees where

– every node has data that is greater than the data in all nodes to the 
left of it.

– every node has data that is less than the data in all nodes to the right 
of it.

• Note that this contrasts with the heap (see later), where a node’s data was 
always guaranteed to be less than (for a min-heap) or greater than (for a 
max-heap) all data in its subtree. [2]

• Since the data sorting is based on a unique key, there is normally no two 
identical sets of data. [3]
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BST Algorithms

• Almost all BST algorithms are recursive as this 
makes them very simple.

• However, the root node might be treated 
differently because it has no parent but should 
it? [1]

• All the methods require that root has been set 
to NULL in the constructor.

• Traversal of a BST is almost always done either 
in-order or pre-order. [2]
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BST Insert Animation (for integer 
key)

26

rootInsert(234)

newNode

234



BST Insert Animation (for integer 
key)

27

124

rootInsert(124)

newNode

234compare



BST Insert Animation (for integer 
key)
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124

rootInsert(124)

234



BST Insert Animation (for integer 
key)
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rootInsert(180)

234

180

newNode

compare

compare

180



BST Insert Animation (for integer 
key)
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rootInsert(300)

234

300

newNode

compare

180

300



BST Insert Animation (for integer 
key)
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BST Insert Animation (for integer 
key)
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BST Insert Animation (for integer 
key)
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BST Insert Animation (for integer 
key)
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BST Insert Animation (for integer 
key)
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rootInsert(310)
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END



BST Insert

• Insert (newdata) [1]

• Get memory for a newNode

• Place new data in the newNode

• IF root is NULL

• root = newNode [2]

• ELSE

• Insert (newNode, root) [3]

• ENDIF

• END Insert
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• Insert (newNode, parent) [1]
• IF newNode’s data < parent.data
• IF parent has no left child
• parent.leftLink = newNode
• ELSE
• Insert (newNode, parent.leftLink)
• ENDIF
• ELSE // what happens if newNode data == parent.data?
• IF parent has no right child
• parent.rightLink = newNode
• ELSE
• Insert (newNode, parent.rightLink)
• ENDIF
• ENDIF
• END Insert
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BST Problem

• The trouble with the ordinary BST, is that if ordered data is 
inserted, you end up with a linked list.

• This means that searching a BST is O(log n) on average at best, 
but has a worst case complexity of O(n).  ( O(h) )

• This problem is solved by using a balanced BST instead of the 
simple BST.

• However, the solution comes at the cost of more difficult 
algorithms.

• Which in turn means that programming, testing, debugging 
and maintaining becomes more time consuming.
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AVL Trees
• Invented by Adelson-Velski and Landis (so AVL) [1]

• It is a height balanced tree. [2] – see separate diagram.

• In other words the height of the left and right subtrees is never allowed 
to differ by more than 1.

• This ensures that the complexity of a search remains at O(log n).

• The height of a subtree is defined recursively as:
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IF the tree is empty

height = -1

ELSE

height = 1 + max(height(leftLink), height(rightLink)

ENDIF



Insertion into an AVL Tree
• Insertion is done the same as for an ordinary BST.

• But if the height is unbalanced, the insertion is followed with a rebalance:
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Insert (newNode, parent) [1]

IF newNode’s data < parent.data

IF parent has no left child

parent.leftLink = newNode

ELSE

Insert (newNode, parent.leftLink)

RebalanceBelowLeftOf (parent)

ENDIF

ELSE

IF parent has no right child

parent.rightLink = newNode

ELSE

Insert (newNode, parent.rightLink)

RebalanceBelowRightOf (parent)

ENDIF

ENDIF

END Insert



AVL Tree Insert Animation
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The tree is now 
unbalanced

So we do a ‘rotation’ 
around the [40]

temp
root

END



AVL Tree Insert Animation
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good



AVL Tree Insert Animation
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AVL Tree Insert Animation
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Rebalancing and Rotations

• Inserting into an AVL tree can result in the tree becoming unbalanced.

• The part of the tree that is unbalanced is going to be somewhere on the tree from 
the insertion point to the root of the tree as only these subtrees are affected by 
the insertion.

• Rebalancing needs to be carried out to maintain the AVL property.

• The rebalancing is done by rotation operations.

• For example a single rotation swaps the role of the parent and child maintaining 
the search order. For a number of cases, single rotation doesn’t work so double 
rotations are used. You are encouraged to find out how these operations work on 
your own. It is not examinable this semester. [1]

• What is examinable is the ability to draw the tree after the rebalancing, so that is 
what you need to be able to do.

• You are also encouraged to find out more about Red-Black trees. These are good 
alternatives to AVL trees.
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The Programs [1]

• BTreeSolver shows the resulting BST, AVL 
Tree, Max Heap and/or Min Heap after insertions 
(which can be randomly generated or chosen).

• HeapSort shows the steps involved in a heap 
sort.

• MTreeSolver shows the resulting Multiway 
tree, BTree and/or B Plus Tree after insertions. 
These are covered in the next lecture.

• Graphs allows you to build graphs and then 
view information about the graphs (future 
lectures).
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Readings
• Textbook: Chapter on Binary Trees, particularly the 

section on Binary Search Trees.

– Should go through the programming example at 
the end of the chapter.

Textbook: Chapter on Recursion



Further exploration
• In the lab/assignment, you would normally be 

asked to provide a rational for your data 
structures. In this video  link below  (from an MIT 
unit on Introduction to Algorithms) for BST 
justification one particular example is used. 

• MIT Lecture:
• https://www.youtube.com/watch?v=9Jry5-

82I68&index=5&list=PLUl4u3cNGP61Oq3tWYp6
V_F-5jb5L2iHb. In the video, the tree algorithm 
is modified to cater for a new requirement. This 
approach shouldn’t be used– see Open Closed 
Principle. Think of a better solution. Other than 
that, the video explains the BST and its use very 
well.

https://www.youtube.com/watch?v=9Jry5-82I68&index=5&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb


Further exploration
• Reference book, Introduction to Algorithms. For further study, there 

are many tree and tree algorithms described in the reference book. 
For this unit, the lecture notes, practical work and the textbook is 
sufficient.

• Optional – recurrence trees 
https://www.youtube.com/watch?v=8F2OvQIlGiU

• An earlier textbook used in this unit (some years ago) is a better 
reference to some of the more interesting Tree (and graph) data 
structures like AVL trees, Red Black trees and AA trees. The book is 
available in the library. It is “Algorithms, Data Structures, and Problem 
solving using C++” by Mark Weiss.

• AVL trees .. from an MIT unit Introduction to Algorithms
• MIT Lecture:

• https://www.youtube.com/watch?v=FNeL18KsWPc&index=6&list=PL
Ul4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb

• MIT Tutorial (different to a lab, no computers)
https://www.youtube.com/watch?v=IWzYoXKaRIc&list=PLUl4u3cNGP
61Oq3tWYp6V_F-5jb5L2iHb&index=29

• https://www.youtube.com/watch?v=r5pXu1PAUkI&list=PLUl4u3cNGP
61Oq3tWYp6V_F-5jb5L2iHb&index=28

https://www.youtube.com/watch?v=8F2OvQIlGiU
https://www.youtube.com/watch?v=FNeL18KsWPc&index=6&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb
https://www.youtube.com/watch?v=FNeL18KsWPc&index=6&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb
https://www.youtube.com/watch?v=IWzYoXKaRIc&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=29
https://www.youtube.com/watch?v=r5pXu1PAUkI&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=28


Data Structures and Abstractions

Multiway 
Trees



Multiway Trees

• Multiway trees are trees that store more than one piece of 
data in a node and more than two links.

• A 3-way tree stores up to 2 items of data per node.
A 4-way tree stores up to 3 items of data per node,
etc.

• Insertion is done in the same way as with a simple BST.

• Of course this means that, like a simple BST, it is possible to 
end up with a linked list.

• Reminder: in the animations we just show storage of a single 
integer, but in reality trees are used to store larger amounts of 
information using a key. [1]
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3-way Tree Insert Animation
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53
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Insert(69)
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END

Insert(28)
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B Trees

• B Trees are balanced multi-way trees in which 
a node can have up to k subtrees.

• Suitable for data storage on disks when 
collections are too large for internal memory.

• As for most data stores, the elements are 
usually records, which have a key and a value.

• The key is used to locate the node where the 
record is to be stored.
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B Tree Definition

• Formally, a B Tree of order m is a multi-way tree 
in which:
– the root is either a leaf or has at least two subtrees;

– each leaf node holds at least m/2 keys;

– each non-leaf node holds k-1 keys and k pointers to 
subtrees where m/2 <= k <= m;

– all leaves are on the same level.

• m is normally large (50-500) so that all the 
information stored in one block on disk can fit 
into one node.
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Insertion into a B Tree

• Insertion of a key (and its record) is always done 
at a leaf node.

• This may cause changes higher up the tree.
• The method is:

1. Locate: Do a search to locate the leaf in which the 
new record should be inserted.

2. Insert:
a) If the leaf has room, insert the record, in order of key.
b) If the node if full, ‘split’ it and move the record with the 

median key upwards.
c) Repeat (b) until either a non-full node is found, or root is 

reached.
d) If the root is full, split it and create a new root node 

containing one key. 
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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5-way B Tree Insert Animation
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Multiway Tree vs B Tree

• The B Tree is clearly more efficient in terms of 
space.

• The B Tree is balanced and therefore has a lower 
search time.

• The B Tree, however, is more complicated to 
code.

• If search time is important (as with a database or 
list of objects in the scene of a game) the use of B 
Trees is essential.
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B+ Trees
• Trees are good for searching, but have poor 

sequential access.
• Some databases require both types of processing, 

for these one uses a B+ tree.
• A B+ tree is a B Tree where only the keys are 

stored in the tree, all the data actually resides in 
the leaves.

• And the leaves are all connected with a list.
• This kind of tree is particularly useful for 

databases that reside entirely on disk.
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5-way B+ Tree Insert Animation
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5-way B+ Tree Insert Animation
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5-way B+ Tree Insert Animation
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5-way B+ Tree Insert Animation
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5-way B+ Tree Insert Animation
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5-way B+ Tree Insert Animation
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Comparison of B and B+ Trees

• They are both balanced so that operations such as Insert and Delete can 
be done in O(h) time where h is the height of the tree.

• B+ trees also allow for fast sequential processing.

• B+ trees store the key only in RAM, not the whole record, therefore they 
use less RAM.

• Both can be tuned to have node sizes that allow fast disk reads.

• As B+ trees use less RAM, they can have larger nodes which improves the 
speed of operations based on the height.

• Both B Trees and B+ Trees have one major disadvantage in common: since 
any node can be up to half empty, they waste space.
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Handling the Wasted Space Problem

• A way to get around this is to really treat them as ADSs, 
i.e. they are conceptually B Trees but are actually 
stored in some other way.

• For example a vector, linked list, dynamic array etc.

• The operations (Insert, Delete, Search etc) in the 
interface do not change, but the internal 
representation and code do change.

• However, it is worth noting that although there are 
many different ways of solving the space problem, 
there will always be a space/time/simplicity trade off.
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Further exploration

• Reference book, Introduction to Algorithms. For 
further study, there are many tree and tree 
algorithms described in the reference book. For 
this unit, the lecture material is sufficient.

• An earlier textbook used in this unit (some years 
ago) is a better reference to some of the more 
interesting Tree (and graph) data structures. The 
book is available in the library. It is “Algorithms, 
Data Structures, and Problem solving using C++” 
by Mark Weiss.


